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This paper is concerned with the problem of the reflection of a plane 
sound wave from a rigid plane which has a movable part in the form of a 
rigid cylindrical piston. The force acting upon the piston from the side 
of the fluid is determined. An integro-differential equation of motion 
of the piston is constructed and its solution is given. 

1. Assume that the plane sound wave, which has a pressure profile 

P = PO (t + :-) > PO (4 = 0 at t<O 

encounters the plane z = 0 at the instant t = 0 and is reflected from it. 
After the reflection, in the axisymmetric case, the deformable part of 
the plane will move with a velocity Vz = V(r, t). where V(r, 0) = 0. We 
assume that the deformations are small, and we determine the pressure 
for t > 0. In order to do this, it is necessary to solve the wave equa- 
tion 

8’p 
~ = sap at2 (I.11 

subject to the conditions 

dP ar- - 
z = -Po (jt at z=O 

P = PO W) at z = ct 

Fig. 1. 
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Here c = const is the speed of sound in the fluid, p,, = const is the 
density of the fluid. Let 

P = ~1 (t, z) + ~2 (r, t, Z) 

where pl( t, z) is the solution corresponding to the reflection from a 
rigid plane [ 1 1 

Then, in order to determine pz(r, t, 2) it is necessary to solve Equa- 
tion (1.1) with the conditions 

dP2 dV 
-=- 

f3Z PO-Z- at x=0, (pz=O at z = ct (1.2) 

(the first condition holds at the deformable part of the plane). The 
solution of Equation (1.1) with the conditions (1.2) is given in the 
form [ 2 1 

2x t 
CPO - 

PZ (7, t, 2) = 2n 
s s 

dq V,’ (q, t -z) dT 

0 z/c 
( 

q = 1/r* + L? + 2rL coscp 

L= vc272-22 i 

2. Let the deforming part of the plane be represented by a movable 
rigid piston placed into a cutout in the plane. In this case V = V(t) and 
at the surface of the piston z = 0 

p2(r,1.0)=$ V’(t--)dqds 
ss 
s 

With fixed r and t the limits of integration with respect to 4 and r 
are determined from the conditions of the intersection of a circle of 
radius R (R is the radius of the piston) with a circle of radius ct whose 
center lies at a distance r from the axis of the piston (Fig. 1). 

Depending on the values of r and t three cases are possible: 

First Case. 0 < t < (R - r)/c; (Fig. 1.a) 

2x 1 

V’ (t - z) dT = cp, V (1) 

0 0 

The total pressure is 

P (r, t, 0) = 2~0 (4 + CPOV (4 (2.1) 

Second Case. (R - r)/c < t < (R + r)/c; (Fig. 1.b) 
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2X-Qp, t 

p~(r,t,O)=g[ \ dq\V’(t---)dr+ 7 dqfV’(t-T)dT]= 

‘PO 0 -% 0 

‘PO 

= cpov (t) - 3 
f 

v (t - T) dcp 

0 

The total pressure is 

p (r, t, 0) = 2~10 (t) + cpJ (t) -- % !V (t - 2’) dq 

0 

Third Case. (R + r)/c < t < m (Fig. 1,~) 

% 

p.(r,t,O)=~pd~~V’(t--i)dl=LPB(t)--~sV(t--)drf 

0 Ii 0 

(2.2) 

The total pressure is 

x 

Here 

P (7, t, 0) = 2Po (4 + CPOV Q) - -y cpo v (t - T) dq c 
;i 

(2.3) 

I?2 - r2 - cv 
Qo = 

__1 
cots 

2rct ’ T = Ra - ra sin2 cp - r cos q~, T b, rpo) = t 

The compressive force, which acts upon the piston from the fluid side, 
is 

F (t) = \\ p (r, t, 0) do = 2n ip (r, t, 0) rdr 

r6R 0 

At t = 0 a cylindrical wave appears near the edges of the piston, 
which then propagates with velocity E towards the center of the piston. 
The wave front r” = R - ct divides the surface of the piston into two 
regions. For t 4 R/c in the first region ahead of the wave front, where 
Oa; r< r”, t< (R- r)/c, the pressure is determined from the formula 
(2.1); in the second region behind the wave front. where r” s v 6 R, 

tR - r)/e c t Q fR + r)/c, the pressure is determined from the forwls 
(2.2). Thus we shall have 

R-d 
. 

F It) = 22% 
I 
0 

‘p&l Q-et, 

R 

&30 (t) + q# Ml rdr + 2% \ {%I @I + CPO~ (t) - 

R .ct 

fP0 _- 
n \ V [t - T (r, q)l &I} rdr = slR2 PPO (II + CPOV (t)l - zcpo@l 

;, 
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c& = f ,rvoyv It - T (r;cp)l dl$ 

R - ct 0 

In order to evaluate the Integral @I we let 

t - T (r, 9) = T, z (r, 0) = t - (R - r) / c, T (r, rp0) = 0 

and, after interchanging the order of integration, we obtain 

t R 

@I = V(z) d,r s s Y (r) rdr 

R-et (t 
- 7) vi - YZ(r) 

=cRij/l- [‘wj”V(r)dr 

0 0 

(2.4) 

At the instant t = R/c the wave reflects at the center and then goes 
to the edge; the wave front is at r” = ct - R. En the time interval 
R/c < t < 2R/c in the first region ahead of the reflected wave front, 
where r” < r < R, R/c S t < (R + r)/c. the gressure is determined by 
Formula (2.3). In the second region behind the reflected wave front, 
where 0 < r 4 r*. (R + r)/c sz t < 2R/c, the pressure is determined by 

Formula (2.2). As a result we obtain 

R 

F (t) = 2n \ PRO (t) + CPOV (t) - GiV [t - T (r, cp)l dv} rdr + 
d--R 0 

ct-R vp.(r. t) 

+ 2n 
s { 

2Po 
CPO 

0) + CPOV VI - y s V [t - T (r, @I dq} rdr 
0 

= nRa 12~0 0) + cpo&l - 2CPo@a 

Here 

et-R Wo.. t: 

Q2= 1 rdr \ V[t-- T_k, q)l dq + i rdr [V [t 
0 0 ct-R 0 

This result Is obtained by calculations similar 
before. 

For the time interval 2R/c < t < m the pressure 
Formula ( 2.3) ; thus 

R 7. 

--T (r,T)l @ = 01 

to those performed 

is determined by 

F (t) = 2n 2Po W + CPOV 0) - --y ‘PO V [t - T (r, rp)] dq 
s 

0 0 

= nRa [2po (t) + cpJ (t)] - 2cpocDs 

After some calculations we have 
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Thus, for the time interval 0 G t < 2R/c, in which the wave that comes 
from the edge of the piston will reach the center and after reflection at 
the center will return to the edge, we have 

F(t)=iTR~[2po(t)+CpoV(t)1-2c%R51/1--[~~zv(T)dT (2.5) 
0 

For the time interval 2R/c < t G 8 we have 

F (t) =nR2 [2p. (t) + cpJ (t)] - 2c2pJ? i -/1 - [‘F]‘Ti (7) dz (2.6) 
t--eR/c 

3. Let us construct the equation of motion of the piston. We denote 
its displacement by a(t), and obtain 

d2u 
nR2hp s = F (t) - F, 

du -- 
dt - -v(t)) 

Here p is the density, h is the thickness of the piston, 

reaction force which acts upon the piston from the opposite 
that 

du 
F, = cl d< + Cau 

Now we shall transform to nondimensional quantities 

ct RPO 
h=s, u1= 2&P PO1 = 4 hpcz 

After dropping the 
piston in the form 

1.4” (t) + 2au' (t) + Bu (t) 

subscript 1 we obtain the equation of motion of the 

t . 
= p (t) + e 

s 
VI - (t - T)~u’ (z) dz (0 < 

0 

t < 1) (3.1) 

t 

u” (t) + 2au’ (t) + flu (1) = p (t) + e s 
v/1 - (t - T)%’ (z) dz (1 

t-1 

where 

Cl 
a++- 

8 RP, 
Rhpc ’ 

fi=A% 
nhpc2 ’ “=hF 

F, is the 
side. Assume 

<t < m) (3.2) 

(3.3) 

The initial conditions have the form 
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74 (0) = 0, u’ (0) = 0 (3.4) 

From this we see that the motion of,a cylindrical piston under the 
action of an incident wave is described by an integro-differential equa- 
tion, which cannot be reduced to a differential equation, unlike that of 
the slab-like piston [ 1 I. Note that for 1 < t < 2 

t 

\ I/i__(i--l)‘r.(~~dr=jl/l-_(f-i)l..(Z)dT+ 1 vi-(t--)%‘(2)dt 
t-1 1 t-1 

Here the second integral on the right-hand side is knowu if we find 
the solution for t < 1, and in general for n < t < n + 1 (n = 1, 2, . . . 1 

t 

\ -fi - (t - T)% (2) dz = i 1/l - (t - c)~u’ (2) dz + i 1/i - (t - z)~u’ (2) dz 
tl1 

where the second 
solution for t < 
presented in the 

ii t-1 

integral on the right-hand side is known if we find the 
n. The solution of Equations (3.1) and (3.2) cau be re- 
form 

t 

u (t) = 
s 

p (t - 2) q (2) dz (O<t<l) (3.5) 
0 

t-n 
c 

t--n n 

u (t) = 5 P 0 - 5) q (2) dz + E S[ s ‘r/l - (t - z - sj%’ (E) dE - 
0 0 t-T -1 

-u (n) VI -(t--z - n)2 
I 

q (T) dz + u (n) q’ (t - n) +[u’ (n) -+ 2au (n)] q (t - n) 

where q(t) is the solution of the equation 
t 

q” (t) + 2aq’ (t) + fiq (t) - E \ vi - (t - T)2q’ (2) dz = 0 (0 < t 4 1) (3.7) 
0 

with the initial conditions 

4 (0) = 0, q’ (0) = 1 (3.3) 

4. Let us find the exact solution of Equation (3.7) with the condi- 
tions (3.8). If it is assumed that 

t 

\ 1/i - (t - T)~ q’ (2) dz = q 0) - 

0 

then Equation (3.7) can be written as follows: 
t 

qn (4 + 2W (t) + (B - 8) q 0) = - 6 s t---Z 

oI/l--(r_~)2q(T)d5 (4.1) 
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We shall seek a solution in the form of a series in the parameter t, 
which is determined according to (3.3), by letting 

q 0) = 90 (t) + 89 0) + +7!4 0) + * . l (4.2) 

Substituting the series (4.2) into Equation (4.1). collecting terms which 
contain equal powers of f, and equating their sum to zero leads to a 
system of ordinary differential equations with constant coefficients: 

q0” 0) + 2w0’ tt) + (B - 4 go 0) = 0 
t 

(4.3) 

qnc (t) + 2ag12’ 0) + (B - e) q, ($1 = - s t---z 
o 1/l _ (t _ .@ 4,-l (2) dz (n = 1, 2, * * -1 

with the initial conditions 
(4.4) 

Qn (0) = 0 (n = O,l, . . . ), Qo’ (0) = 1, Pn’ (0) = 0 (n = 1, 2, ..*) (4.5) 

These equations csn be easily solved successively: 

1 
q0 (t) = G ie kf - e"'), h,z = -Uf@, co=l/a2+e-_B (4.6) 

where o can also be imaginary 

t 5 

!&f(r)= - s qo(ft--zfd~ s Z- % 

0 
o j/l _ fZ _ g)% G-1 f f) d% 

f t 
=- s 

0 
Pn_-l(%)d%~~l~(r:S)pPotf--r)~~ 
f t--E 

=- s q?u(%) d% s t--%--z 

0 0 

u’i - (t - % - qa go (-@ dz 

or 
f 

q,a (4 = - s A’ 0 - 2) q,+._l (2) dzv I go (N dr (4.7) 
0 

We shall prove the convergence of the series (4.2) by utilizing 
obvious estimates 

f 

I go 0) I -c M, M = max I go (t) I, is~~~1~o)/1-_1(t~d~Iqo~2~ldr<M 
s 

i 

lq1Wid fK 0 
s 

--z)I~jqo(~~jdz -CM% 
ts 

i QB w I < J+fs 2! 
0 
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Then 

Thus, the exact solution of Equation (3.7) with the conditions (3.8) 
is represented in the form of a series (4.2) which converges uniformly 
for all values of t < 1 and any parameter E. 

However, for c > 1 the solution in the form of the series is incon- 
venient from practical considerations. We shall derive an approximate 
solution. F’or this purpose we shall expand the root 4 1 - t2 in a series 

(4.8) 

1 

c lc Jl (ml a* 
V-1 - ta cos y,,t dt = - - = - 

JI h,,) 
2 r, 2’ Or 

a,=z----- 

6 
Tn 

where J1 is the Bessel function of the first order. One can show that the 
series (4.8) converges uniformly for all t and rather rapidly at that, 
since it follows from the properties of Bessel functions that 

(-l)n I/n 
a, z 

r,” 
for large n 

We write out several of the first terms of the series (4.8): 

m= 1.133cos+t-O.188cos~t+0.084cos~t-O.050cos~+. . . 

In the first approximation we retain only one term of the series, i.e. 

we let 

vm &33cos$ t (4.9) 

Substitution of (4.9) into Equation (3.7) yields 
f 

L {q} = q” (t) + 2aq’ (t) + flq (t) - el 
s 

cos + (t - 2) q’ (2) dz = 0 
0 

q (0) = 0, q’ (0) = 1 (el = 1.133 e) 

Let us apply the one-sided Laplace transform and denote by q’(A) the 
transformation of the function q(t): 

03 

s L {q} e-“tdt =: 
0 

)? + 2a), + p - e hZ +h:,, me) q* (k) - 1 = 0 
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From this 

In order to find the inverse trans- 
form q(t) it is necessary to know the 
roots of the function $(x9. Let us 
studs the roots of the equation 

$41 = 0 by replacing it bs its 
equivalents 

Fig. 2. 

Yl oil = Y2 (h), y1(A) = h2 + 2ah + p - e, Y2 (A) = - f ia J:,,, 

The real roots of the equation are those values of h for which the 
curves of the functions yI()l) and yg(X) intersect each other (Fig. 2). 

Two ~88~s are possible. If 

then there exist two real negative and two complex roots, whose real 
parts are positive, according to the Hnrwitx criterion. If 

then all four roots are complex conjugate. The conditions were derived 
from the inequality yIf- a) < yz(- a). The inverse Laplace transform- 
ation will yield the original function 

where XI, A,, A,. and A, are the roots of function (4.10). The replace- 
ment of the kernel by (4.9) is equivalent to neglecting in the solution 
harmonics with a high frequency and small amplitude. 

I am grateful to Kh. A. Rakhmatulin for the attention he has paid to 
my work. 
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